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A method is described for calculating the turbulent boundary layer on a 
flat plate in an equilibrium dissociated and ionized supersonic stream. 
An estimate is made of the effect of ionization on the drag and heat 
transfer in a stream of air. 

The need for earth re-entry of hypersonic vehicles has stimulated the develop- 
ment of methods for computing the drag and heat transfer in flow of dissociated and 
ionized gas mixtures. While considerable success has been achieved [1-6] in inves- 
tigation of laminar flows of this type, turbulent flows have received little study. 
The author knows of only one paper [7] dealing with investigation of the turbulent 
boundary layer on a flat plate in a stream of equilibrium dissociated and ionized 
air. The method is predicated on the equilibrium composition, thermodynamic proper- 
ties, and transfer coefficients of the mixture being known functions of temperature 
and pressure. But this approach cannot be used to calculate the characteristic fea- 
tures of turbulent heat and mass transfer in multicomponent mixtures (such as the 
effect of separation of elements in the laminar sublayer and the occurrence of dif- 
fusion terms in the expression for the heat flux). 

The present paper suggests a method which is free of these defects. 

We assume a two-layer model of the turbulent boundary layer (a laminar sublay- 
er and a turbulent core). We put the turbulent analogs of the Prandtl and Schmidt 
numbers equal to I, and we use the ambipolar approximation [i] to describe diffu- 
sion in the laminar sublayer. 

Then the system of equations of the multicomponent chemically equilibrated, 
partially ionized, turbulent boundary layer on a flat nonconducting plate, in the 
absence of external electromagnetic fields and radiative energy transfer, can be 
obtained in a manner analogous to that used in [8] for a mixture of electrically 
neutral gases, and takes the following form (the average signs are omitted for brev- 
ity): 
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It is assumed that r independent chemical reactions occur in the boundary lay- 
er, described by the equations 

N N 

Z v;~A~---X v~A~ (s = 1, 2 . . . . .  r). (8) 
i= 1  i=1  

The effective ambipolar Schmidt numbers are determined by the relations [i] 
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In the two-layer model assumed for the turbulent boundary layer, using the sys- 
tem of equations (1)-(7), in the laminar sublayer one must omit terms containing the 
turbulent viscosity e, and in the turbulent core one must drop terms involving the 
molecular-transport coefficients and dimensionless groups containing them. 

The boundary conditions for the system of equations (1)-(7) have the form 

U=U e, T=Te ,  P=Pe, c*~= (c*k)e foJ: y - + c o ,  

Ul-o = re+o, T t -o  = Tl+o, (C~)t-o = (c~)l+o, 

(J~)l-o = (J~)z+o, qt-o = qt+o, Tt-o = 1:l+o for y = gL, 

u = O ,  v - O ,  T : T w ,  J ~ : O  for y - O .  

(11) 

(12) 

(13) 

In the last of conditions (13) it is postulated that the wall is impermeable 
and that no heterogenous chemical reactions occur at the surface. 

We convert from the xy variables to the Crocco variables ~ = x and ~ = u/u e [9] 
in the system of equations (1)-(7). 

It was shown in [i0] that in Eqs. (3) and (4) for the energy balance and diffu- 
sion of an element, written in Crocco variables, the terms containing derivatives 
with respect to $ are of order Re -~ Neglecting these terms for this reason and 
assuming that the friction stress is constant across the boundary layer [8], we ob- 
tain 

= o, d J; 
du d~ --  O. ( 1 4 )  

Expressions for the dimensionless generalized heat flux q and the diffusion 
flux of the k-th element J~ have the form 
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$_ dH j;=_ ~ dc*k (16) 
du ' u e c/u for u > u  t. 

I n  e x p r e s s i o n s  ( 1 5 ) - ( 1 6 )  H = H / ( c p e T  e ) ,  ~ = h / ( c p e T e ) .  

T h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 4 ) - ( 1 6 )  c a n  e a s i l y  b e  o b -  
t a i n e d  f r o m  t h e  c o r r e s p o n d i n g  c o n d i t i o n s  ( 1 1 ) - ( 1 3 ) ,  c o n v e r t i n g  t o  t h e  new v a r i a b l e s  
i n  t h e s e  e q u a t i o n s :  

v=re,  p=p~, C;=(C*k)e for U =  1, 

Vt-o -= Tz+o, (c*k)t-o = (c;)l+0, (J;)t-0 = (J;)t+o, ~-0 = ql+0 for u = u,, 

v = 0 ,  T=T,~, J ~ = 0  for u = 0 .  

(17) 

(18) 

(19) 

We ta_ke the logarithmic derivative of the equilibrium conditions (5) with re- 
spect to u: 

N 
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K~. dT du k=I i=1  "= c h du 

In addition, we use the first integrals of the energy-balance equation and the 
element diffusion equation (14). Carrying out the integration and using boundary 
conditions (18) and (19) and expressions (15)-(16), we obtain: 

in the laminar sublayer 

N 

E 1 dcj Sc~ a ~ c h ' ~ - d u  = 0  (k=  I, 2 . . . . .  N - - r - - 2 ) ,  
i=i 

du c v Sc? )" ~ J 

(21) 

(22) 

and in the turbulent core 

dc~ _ 0, dT cwTe ~ - - ( k - -  1) M~ -- ~ h i du J (23 )  

To c l o s e  t h e  s y s t e m  o f  e q u a t i o n s  ( 2 0 ) - ( 2 3 )  we u s e  t h e  two i d e n t i t i e s  o f  Eq,  
(5), first differentiated with respect to g. 

The system of equations obtained can be regarded as a linear algebraic system 
in the derivatives of the concentrations of individual components and in the temper- 
ature of the mixture with respect to velocity. This method of calculating the con- 
centration and temperature profiles by means of the system of equations (20)-(23) is 
a method of successive approximations, and reduces to the following. 

In the initial approximation certain arbitrary values are taken for the dimen- 
sionless heat flux to the plate surface and for the dimensionless velocities at the 
edge of the laminar sublayer. 

The system of equations (20)-(23) is solved at the outer edge of the boundary 
layer (for u = i). Here the coefficients of the system are determined from the tem- 
perature and mixture composition, which are known from the boundary condition (17). 
The values of the derivatives (dcj/d~)e and (dT/d~)e resulting from the solution of 
the system are used in a suitable numerical method of integration to determine the 
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Fig. 1. Dependence of the heat flux (Wlm 2) 
and of the friction coefficient: a) on the 
Reynolds number (M e = 3), and b) on the Mach 
number (Re x = 4 �9 i0 s) for T w = 3000~ Pe = 
0.2 bar: i) T e = 14,000~ 2) 12,000; 3) 
i0,000. 

/ j 7/ 

composition and temperature at the next point of the boundary layer, ~ = i - A~. For 
example, using the Euler method, we have 

A -  dc~ 
c: (5) = c: (~ + Au) - ~u ~ (u-~- ~ ) ,  

du 

T (5) = r ( ~ +  A~) - -  Af  a__r (~ + ~). 
du 

(24) 

The above process is repeated until one passes into the laminar sublayer, i.e., 
for ~ ~ ~l, Thereafter the calculation procedure is altered somewhat, since the co- 
efficients of the system of equations (20)-(23) in the laminar sublayer depend not 
only on the temperature and concentration of the individual mixture components, as 
is true in the turbulent core, but also on the derivatives dcj/d~ of the concentra- 
tions. To overcome this difficulty an iterative scheme is used. The effective am- 
bipolar Schmidt numbers dci/d~ , which depend on Scj(a), are assumed in the initial 
approximation to be of arbitrary magnitude, e.g.,l: By subsequently solving the 
system of equations (20)-(23), we determine the values of the derivatives dc~/d~ 
and dT/du at the edge of the turbulent core on the laminar sublayer side in ~he first 
approximation, and then by using Eqs. (6) and (9) we can compute the effective am- 
bipolar Schmidt numbers in the next approximation. Then we again solve the system 
of equations (20)-(23), and so on, until the desired degree of accuracy is obtained. 

Then Eq. (24) is used to determine the concentrations of the individual compo- 
nents and the mixture temperature at the next point in the laminar sublayer. This 
scheme of calculation is carried out right to the wall (~ = 0). 

The above method allows us to determine the gas temperature at the wall, for a 
given velocity u I at the edge of the sublayer, as a function of the dimensionless 
heat flux qw to the wall. 

Thus, the problem of determining ~w and the relationship between the concentra- 
tion and temperature ~rofiles and the velocity reduce to finding the roots of the 
nonlinear equation f(qw) - Tw = 0, which can be solved by any of the standard meth- 
ods. 

After calculating the concentration and temperature profiles we can use the 
equation of state (7) to determine the mixture density, and then use Lapin's method 
[8] to determine the surface-friction coefficient and the velocity at the edge of 
the laminar sublayer in the new approximation 

l 

= c , - ~ "  (25) 
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Fig. 2. Typical profiles of concentrations and temperatures 
(~ allowing for ionization (a), and without ion- 
ization (b), for Pe = 0.2 bar, M e = 3, Re x = 4 �9 105: cz - 02; 
c 2 - N2, C 3 -- NO; c 4 -- O+; c 5 -- N+; c 8 - O; c 7 - N. 

Fig. 3. Dependence of the ratios of heat flux and friction co- 
efficients to their corresponding values calculated without 
allowing for ionization, on the temperature at the outer edge 
of the boundary layer for M e = 3, Re x = 4 �9 I05. T w = 3000=K: 
I) qw/(qw)w.i, P = 0.2 bar; 2) qw/(qw)w.i, Pe = I bar; 3) cf/ 
(Cf)w.i, Pe = 0.~ bar; 4) cf/(Cf)w.i, Pe = I bar. 

Because there is no rational theory of turbulence nor reliable test data we 
cannot presently estimate the effect of physical and chemical processes occurring 
in the flow on the structure of the turbulent boundary layer. Therefore, most of 
the known methods made the assumption that this effect is absent [7, 8]. According- 
ly, in the specific computations we assume that the empirical constant in Eq. (25) 
has its value for a uniform flow, i.e., ~Ii.5. 

After the velocity is calculated at the edge of the laminar sublayer in the new 
approximation, the calculation is re~eated. The criterion for ending the computa- 
tion is the condition lu~ /~n-l) -I| ~ ~. 

This method was used to calculate the turbulent boundary layer on a flat plate 
in a high-temperature supersonic air stream. It was assumed that, in the range of 
variation of the parameters considered, the following independent thermodynamic pro- 
cesses occur at the outer edge of the boundary layer (T e = 9000-15,000 ~ , Pe = 
0.2-1 bar): 

M + Q ~ : v ~ = - 2 0 ,  5i ' - -N2-~M--2N , Yi -=NO~:b[_N-=O,  

O@e--~O++2e -, N - ' , - e - ~ - N  § !-2e-. 

(26) 

(27) 

(Here M is a catalytic particle.) 

The dependence of the constants of the equilibrium reactions (26) and (27) of 
the specific heats and enthalpies of the individual mixture components on the tem- 
perature were approximated using the data of [Ii]. The transport coefficients in 
the laminar sublayer were calculated using formulas of the molecular and kinetic 
theory of gases [12]. 

Here the dependence of the collision cross sections for neutral-neutral and 
neutral-charged particle pairs, and the cross sections for supercharging on tempera- 
ture, were approximated using the data [5, 6, 13]. The cross sections for mutual 
collisions of charged particles were considered to be of Coulomb type. 
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The results of the calculations illustrating the effect of the oncoming stream 
parameters (Mach number M e = Ue/a e, Reynolds number Re x = peUeX/~e, and temperature 
Te) on the drag and the heat transfer are shown in Fig. I (a and b). 

Figure 2 shows typical profiles of individual component concentrations and of 
the mixture temperature, calculated allowing for ionization and without ionization 
[reaction (27)]. The broken lines on Fig. 2 show the reduced curves for variation 
of concentration of elemental oxygen through the boundary layer. Figure 2 shows 
that the elemental composition of air in the laminar sublayer can vary by 20-30%; 
in the calculation allowing for ionization elemental nitrogen accumulates at the 
wall, while oxygen accumulates when ionization is not allowed for. This conclusion 
agrees qualitatively with the results obtained in an investigation of the laminar 
boundary layer in partially ionized air [3]. 

In order to evaluate the effect of ionization on the drag and heat transfer in 
the turbulent boundary layer, the friction factor cf and the heat flux to the wall 
qw were calculated, both allowing for and not allowing for ionization. 

The results of the calculation are shown in Fig. 3; the ratios of qw amd cf to 
their values computed without allowing for ionization, are shown as a function bf 
temperature, at the outer edge of the boundary layer. 

The comparison was made with fixed values of Mach and Reynolds numbers. Figure 
3 shows that extrapolation of the no-ionization theory to the temperature region 
above 10,000~ leads to an appreciable underestimate of friction and heat flux to 
the plate surface. 

NOTATION 

x, y, coordinates; u, v, velocity components; p, pressure; T, temperature; p, 
density; cj, mass concentration of the j-th component; c~, mass concentration of the 

k-th element; Jj, diffusion flux of the j-th component; J~, diffusion flux of the 

k-th element; Cp, specific heat at constant pressure; m, molecular weight; ej, 
charge of the j-th component; ~, dynamic viscosity; ~, turbulent viscosity; Sc~ i, 
binary Schmidt number of the j-th and i-th components; Cki, concentration of t~$ 
k-th element in the i-th component; h~~ enthalpy of formation of the j-th component 

under standard conditions; Kn s, equilibrium constant of the s-th reaction; Pr, 
of the j-th N, component Prandtl number; Le}a), effective ambipolar Lewis number 

number of components in the mixture; r, number of chemical reactions occurring in 
the boundary layer. Indices: i, j, components; k, elements; e, I - 0, I + 0, w, 

~ arameters at the outer edge of the boundary layer, at the edge of the laminar sub- 
ayer (approaching it from the wall side and from the outer side),and at the wall, 

respectively; the symbols without subscripts refer to the mixture as a whole. 
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